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Abstract 
 
Energy loss due to indentation rolling resistance is a major factor in belt conveyor design.  
The determination of the indentation rolling resistance of a conveyor belt over the idler 
system depends on the properties of the rubber compound of the backing, the method of 
calculation of the resistance value and, of course the conveyor system parameters like 
carrying weight, idler radius and belt speed.  Two theoretical approaches have been 
employed to predict the loss to be expected for a particular installation and belt cover 
rubber.  The results of these calculations are compared to direct measurements of the 
indentation rolling resistance in this paper and conclusions offered on important elements 
of prediction methodologies. 
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Fig. 1:  Schematic of viscoelastic behavior during belt cover indentation 

 

Prediction models are based on various assumptions and consequently may provide 
different results, even for the same material parameters.  One aspect of modeling is that 
of the kinematics of the backing deformations.  Another is how the indentation loss is 
derived from the deformation model.   

Jonkers [3] focuses on the energy dissipation rate of the cover material in a steady 
deformation cycle whereas Lodewijks [4] and others determine the power of the stress 
distribution at the idler/backing interface.  In the latter case, the effective resistance force 
of the belt on an idler roll is related to this power through the moment of the interface 
stress distribution about the center of the idler roll.  As most models of indentation rolling 
resistance are viewed as a steady state process where the cover material moves though a 
“control volume” region around the idler roll interface, these two different approaches 
could also be characterized as energy dissipation and moment methods.  Alternately, 
these are internal and external work perspectives.  Differences result in these 
approaches, depending on the material model and the deformation modeling in each, but, 
of course, under the same assumptions, both the energy dissipation rate and the power 
methods must provide the same result, assuming no slipping at the idler/backing 
interface, by the conservation of energy principle. 

More complete deformation models such as those of May, et. al., [5] or Hunter [6], 
treat the backing as fully two-dimensional so that shear deformation occurs in the 
backing.  These more rigorous models generally fall into the category of power methods 
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and ensue from different material and deformation assumptions, and provide some 
differences in predicted resistance values.  Lodewijks [4] has shown that indentation 
resistance values from these two dimensional approaches are somewhat higher than the 
one-dimensional models, but not by significant amounts for similar material models.   

One can also take a completely computational approach to this rolling contact 
problem, where the cover deforms as a two-dimensional medium and modeled by finite 
elements [8].  Like the power method mentioned above, the interface stress distribution 
and center of reaction offset from the idler roller center is iteratively determined to 
provide a resistive force on the belt.  The advantage of a computational approach is that 
less restrictive deformation models are possible, such as modeling the entire belt carcass 
as may be important for cable reinforced belts where the deformation between the steel 
cables also dissipate energy.  On the other hand, recourse to computational methods at the 
outset does not bring out important parameter dependence or may be time consuming and 
expensive for parameter studies. 
 
2.1. One Dimensional ‘Winker Foundation’ Models 

Modeling of the cover layer as a Winkler Foundation provides a simple yet direct 
way to analyze the rubber deformation.  Though rubber is known to deform in shear, the 
Winkler model assumes the belt cover to be a bed of independent longitudinal springs so 
that their deflection versus time can be modeled to conform to an indentation magnitude. 
 
 

 
In the approach of Jonkers [3], the strain energy absorbed by the backing material is 

approximately determined.  Rather than the actual stress/strain path, the load cycle is 
taken to be that of an elliptical path of the Lissajou oval.  The methodology assumes that 
the deformation cycle experienced by the backing, modeled as a one-dimensional Winker 
foundation, is continually one of compression followed immediately by tension in a 
periodic, single frequency, sinusoidal cycle with a half wavelength equal to the contact 
length with the idler.  The load balance – stress equilibrium equation and stress/strain 
determine the maximum strain o , used to arrive at a ‘correction’ for the rubber 

properties.  This is described in Rudolphi and Reicks [10] and is used in the results that 
follow. 

 

Direction of  
belt motion 

Interface stress 

Belt 

Idler 

Fig. 2:  Winkler representation of the indentation and stress between the belt and idler. 
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3.2. The University of Newcastle - Recirculating Belt Test Facility 

Tests measuring the rolling resistance of a short belt sample of the same belt cover 
material were made at the TUNRA Bulk Solids laboratory at The University of 
Newcastle.  The test setup is illustrated in Figure 3.  The test facility accepts pre-spliced 
endless belts up to 600 mm wide and 5500 mm long.  The belt speed, idler roll diameter 
and vertical load can be varied and the influence of each parameter measured 
independently.  The applied vertical load is a result of the vertical component of the belt 
tension in addition to a minor component due to the self-weight of the belt.  The vertical 
load is varied by adjusting the counterweight.  To ensure the contribution of the belt 
flexural resistance is minimized the deflection of the belt over the instrumented idler roll 
is limited to conventional sag ratios, with 2.0 % selected for this study.   

 
 
 

 

  
 

The total horizontal force ܨ௛, acting on the idler roll is due to the indentation rolling 
resistance and the rotating resistance of the idler roll.  Measurement of the horizontal 

Fig. 3:  Illustration of the TUNRA Bulk Solids conveyor belt indentation rolling 
resistance test facility. 
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Several observations are immediately clear from Figure 4. 
 

a. Within the range of tested belt speeds, the measured and calculated values of the 
indentation resistance are nearly independent of the belt speed.  This is especially 
true from the calculated values and fairly well corroborated in the measured 
values. 

b. The calculated values are all considerably less than the measured data and have 
less load dependency.  These represent methods that have been used for conveyor 
design in the past. 

c. The energy dissipation method of Jonkers is somewhat higher than the stress 
power or moment methods of Lodewijks as expected. (Lodewijks [4]).  This is 
due to the presumption of initial tensile strain inherent to the method. 

  
Based on observation (a) that the indentation resistance is nearly belt speed 

independent for this cover compound, further comparisons were performed at the single 
belt speed of 5.0 m/s.  Figure 5 shows the effect of using the strain amplitude corrected 
material properties as outlined in Section 2, for the Jonkers’ method, M1, and the 
Rudolphi Reicks adaptation of Lodewijks’ method, M2.  Those calculated values, along 
with the measured values of both tests and the non-strain corrected calculated values, are 
shown in Figure 5. Note measurements were made at two loads only for the incline roller 
tests. 
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Fig. 4: Indentation resistance at low strain and various belt speeds.                              
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From the results presented in Figure 5 we further observe that: 
 

a. Low strain and strain corrected prediction results are similar at low load where the 
strain is low. 

b. The strain corrected calculations are higher than those based on non-strain 
corrected rubber properties and diverge more steeply as the strain effect increases 
with increasing loads. 

c. The 3% strain test data provides parallel but higher loss prediction than those 
from the low strain data and crosses the strain corrected data at a load 
representing 3% strain in the backing material. 

d. The two measured values with the Inclined Roller test correlate fairly well with 
the measured values from the TUNRA test facility, but both sets of experimental 
data are higher than predicted.    

e. Even though the strain corrected calculations trend better to the measured values 
than the non-strain corrected (‘low strain’) results, they are still considerably 
lower than the measured values. 

 
Point (c) illustrates that use of rubber test data at high strain provides higher loss 

predictions which better match test results at intermediate loads but are too high at low 
loads.  Points (d) and (e) lead to the question if indentation rolling resistance may not be 
the only loss taking place during the testing.  In both cases, care was taken to ensure 
adhesion between the test roll and the rubber was not an important contribution by using 
talc or a weathered surface as would occur in normal operation.  Both had continuous 
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Fig. 5: Indentation resistance factor - measured and calculated - at various loads.         
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Appendix A 
Estimate of Rolling Resistance due to Flexure in the Tested Specimen 

  
The Recirculating Belt Test Facility described in Sec. 3.2 controls the lateral belt 

load by controlling the belt tension and a small deflection of the belt as depicted in Figure 
3.  That lateral deflection, though small (  2%, or 0.04m over a span 2m), introduces a 
flexural deformation into the test, and thus a contribution to the measured resistance to 
motion of the belt.  The purpose of this appendix is to make an estimate of the flexural 
contribution to overall measured resistance to motion so that it can be separated from the 
measured values to give a more realistic comparison of the indentation resistance to 
calculated values of indentation in Sec. 4. 

To quantify the effects of flexure or bending, we take an energy dissipation 
approach, somewhat similar to that for indentation by Jonkers’ [3] approach for 
indentation, where it is presumed that the flexural deformation cycle is harmonic, and 
that as the belt passes over the roller, an amount of energy per unit volume U  is 
dissipated within the belt cover due to hysteresis.  The energy dissipated is figured on a 
half cycle, and is determined by the dynamic rubber properties and the strain amplitude 
of the longitudinal bending strain o  according to the formula [cf. ref. 1], 

 

  22 tan
22 oo EEU    (A1) 

 
Thus, knowing the dynamic moduli, the strain energy dissipated per cycle of 

deformation depends on the strain amplitude.  Of course this approach has its limitations, 
stemming mostly from the assumption of the harmonic deformation cycle, which is not 
the actual case, and is known to overestimate the actual hysteresis loss of a non-periodic 
cycle, but at least is provides an estimate. 

Based on eqn. (A1) and assuming a steady, harmonic deformation process, a 
general formula for the resistance to motion factor (effective drag force per unit belt 
width per unit carry load ܹ) that results from equating internal energy dissipation (in a 
volume of material of unit belt width and half wavelength of the assumed deformation 
cycle in the direction of belt motion) to the external work (drag force times the half 
wavelength distance) an equivalent drag force factor is, 
 

        







z

o dzzzE
W

dzzU
W

f 2

2

11 
 (A2) 

 
where z is a coordinate through the belt thickness, and where, in general, the loss 
modulus E  , or equivalently   tanE  , has been kept within the integration since the 
dynamic properties may be a function of the strain. 

For indentation, Jonkers [3] assumes that the backing behaves as a Winkler 
foundation (no shear deformation) and presumes the compressive strain through the 
backing is harmonic in time, or sinusoidal in the distance along the line of contact with 
the idler with the peak strain amplitude o at the idler centerline.  To complete the 
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indentation formula, Jonkers uses the viscoelastic stress/strain relationship and 
equilibrium of the integrated contact stress with the vertical load on the idler ܹ to 
determine the compressional strain amplitude as,  

 

        31
34

sin1
4

cos2  








 Dh
E

W
o  

where ܦ is the effective idler diameter.  Then, assuming E  or E  is not dependent on the 
strain, and observing that the strain amplitude ߳଴ is independent of ݖ (a consequence of 
the Winkler foundation model), insertion of the above expression for the strain amplitude 
into the above formula (A2) for if  produces Jonkers’ equation for the indentation 

resistance factor; 
 

(A3) 
 
 

We observe here that the drag factor’s dependence on the idler load is ܹଵ ଷ⁄  such that the 
drag force, as defined as the friction force divided by the normal force (ܹ), the friction 
factor for indentation is proportional to ܹସ ଷ⁄ . 

For flexure or bending of the belt, the longitudinal strain through the belt thickness 
is assumed to be linear through the cross-section according to the “planes remain plane” 
assumption of simple bending theory such that ߳଴ ൌ  ଴  is the radius ofߩ ଴, whereߩ/ݖ
curvature of the belt at the cross-section where the flexural strain is greatest, or where the 
radius of curvature is a minimum.  As in simple beam theory of elastic deformation, the 
radius of curvature is not a function of z and the drag force for bending, from eqn. (A2) 
becomes, 

 
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2
0

1

2 
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  (A4) 

where again ߩ଴ is the radius of curvature at the point of maximum flexural strain in an 
assumed harmonic deformation cycle.   If, as in Jonkers’ formula (A3), we take E   to be 
independent of strain amplitude, the eqn. (A4) becomes, 


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 IE
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fb   (A5) 

where I  is the second moment of the belt cross-section.  To determine bf , it remains to 

determine the radius of curvature 0 , which is similar to the determination of the flexural 

strain in the harmonic cycle as for the strain amplitude ߳଴ above in the indentation 
process. 

The formula (A5) for the effective drag force due to belt flexure is predicated on a 
harmonic strain cycle that would be experienced by longitudinal elements of the belt 
cover as it moves through a half-cycle of continuously recurring cycles of bending.  For 
the situation of interest here, i.e., for the belt testing facility as described in Sec. 3.2, the 
belt shape through the top test section where the forces on the idler are measured, in 
steady running conditions, is a complex viscoelastic problem.  For purposes here, we 
approximate the actual shape by solving the static problem of a tensioned beam over half 
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the span of the test section, determine the radius of curvature at the mid-span, or at the 
idler, and presume that the strain at the idler is the maximum, or that the radius of 
curvature there is a minimum and take the strain to vary harmonically across the top 
section of the test fixture. 

   
Strain/Radius of Curvature Relationship 

To determine the strain amplitude ߳଴ in flexure, or equivalently the radius of 
curvature ߩ଴, we neglect viscoelastic effects and assume that the belt shape is 
approximately that of a beam under axial tension T  and the governing differential 
equation for the lateral displacement  xw  is, 

 xq
EIdx

wd

dx

wd 1
2

2
2

4

4

   (A6) 

where  xq  is a distributed lateral load, E  is the elastic material modulus and I  the 

second moment of inertia of the cross-section and  EIT2 .  Corresponding to the test 
configuration, we solve the homogeneous ( 0q ) differential equation above, with the 
boundary conditions, 

  00 
dx

dw
,  

EI

W

dx

wd

2
0

3

3

 ,   0Lw ,     0
2

2

L
dx

wd
 

where W  is the vertical (idler) load on the beam at mid-span and L  is the distance from 
the idler to the fixed end pulley. 

The solution to the differential equation (A6) is well known, and together with the 
boundary conditions above determines the deformed shape of the belt due to the lateral 
load ܹ at the idler.  From that solution, the lateral displacement ݀ at the idler is, 
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 
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and the radius of curvature, or inverse of the second derivative of the lateral displacement 
 xw , at the idler, 

   
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2
0

1
2

2

0  
   (A8) 

Then, using the above two equations, given the section modulus ܫܧ, the belt tension ܶ (or 
 and lateral displacement ݀ at the idler, eqn. (A7) determines ܹ and eqn. (A8) (ߣ
determines  ߩ, or effectively the bending strain, and from eqn. (A4), the resistance factor 
for bending is, 
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f 22 1
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1

8
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 . (A9)
 

We note here that if E  is strain amplitude dependent, and in the presence of the 
linear strain field for bending, the integration that remains may have to be done 
numerically.  We also observe that if E  is taken to be independent of the strain, or not a 
function of ݖ, then the integral would appear as IE  , but the I  of this calculation might 
be different than that of the denominator of (A9), as that one is the effective value for the 
static shape of the belt while the current one pertains to the viscoelastic property of the 
belt cross-section.  These could be different, depending on the belt construction. 
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Sample Calculation 

Based on eqs. (A3) and (A9) and the following parameters, the indentation and 
bending drag forces, as a function of the lateral load ܹ were determined. 

 
Test setup parameters: 
Idler diameter and radius: ܦ ൌ 150	݉݉, ܴ ൌ 75	݉݉. 
Bottom cover thickness: ݄ ൌ 6.5	݉݉ 
Belt carcass thickness (woven cord): ܿ ൌ 4.0	݉݉ 
Span length from idler to pulley: ܮ ൌ 1.0	݉ 
Idler offset at mid-span: ݀ ൌ 40	݉݉ 
 
Static belt shape parameters: 
Measured belt section modulus from a cantilever beam/deflection test: ܫܧ ൌ
5.78	ܰ݉ଶ/݉ 

Second moment of the cross-section (solid): ܫ ൌ
ଵ

ଵଶ
ሺ݄ ൅ ܿ ൅ ݄ሻଷ ൌ 4.094 ∗

10ି଻	ܰ݉ଶ/݉ 

Second moment of the cross-section (no carcass): ܫ ൌ ׬2 ଶݖ
௖ ଶ⁄ ା௛
௖ ଶ⁄ ݖ݀ ൌ 4.041 ∗

10ି଻ܰ݉ଶ/݉ 
Effective modulus (measured): ܧ௠ ൌ ܫܧ ⁄ܧ ൌ 5.78 4.094 ∗ 10ି଻⁄ ൌ 1.412 ∗
10଻	ܰ݉ଶ/݉ 
 
Viscoelastic belt parameters: 
Test temperature: 25௢ܥ 
Frequency/temperature shift factor (from Fig. 3, Ref. 13): ்ܽ ൌ 1.0 ∗ 10ିଷ 
Dynamic moduli (from master curve, Fig. 2, Ref. 13): ܧ′ ൌ 2.7 ∗ 10଻	ܰ/݉ଶ, ܧ′′ ൌ 2.7 ∗
10଺ܰ/݉ଶ  
Modulus at test conditions: ܧ ൌ ଶ′ܧ√ ൅ 	ଶ′′ܧ ൌ 2.733 ∗ 10଻ܰ/݉^2 
Effective section modulus (used in eqn. A9): 
ܫܧ ൌ 5.78ሺܧ ⁄ெܧ ሻ ൌ 5.78ሺ2.733 1.412⁄ ሻ ൌ 11.19	ܰ݉ଶ/݉ 
 

 
The calculations were performed at the various loads ܹ as measured in the belt test.  

The belt tension ܶ that goes into eqn. (A9) was determined by eqn. (7) in an iterative 
process, i.e., given a load ܹ and idler displacement ݀, ܶ was determined to satisfy (A7).  
The results of that calculation for the indentation and bending drag force are shown in 
Figure A1 below. 
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From Figure A1 we may see that the drag factor for flexure is about 0.0032 across 

the range of loads considered, and is actually greater than the indentation drag.  However, 
as the energy dissipation approach tends to overestimate the drag factor, just as seen in 
the indentation results as calculated by Jonkers’ method (M2) vs. the Lodewijks method 
(M1) of Figure 4.  Thus, instead of taking a drag factor of 0.0032 for the full effect of 
bending, one can use the ratio of the M2 to M1 curve of Figure 4 to more realistically 
estimate the contribution of flexure.  That ratio of the M2 to M1 curve is about 0.76 over 
the whole range of loads, so a corrected bending value would be 0.0032*0.76 = 0.0024.  
To then take into account the flexural effects in the test results, the value of 0.0024 is 
then subtracted to “correct” the measured TUNRA test results of Figure 5 to arrive at the 
“TUNRA bending corrected” results of Figure 6. 
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Fig. A1: Drag resistance factor for indentation and bending by energy dissipation.             
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